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A microscopic generalization of Bernoulli’s equation is established by appealing to low-order density 
gradient theory of an inhomogeneous liquid. This theory, used earlier to relate surface energy, bulk 
compressibility and the thickness of the liquid surface, is here generalized to embrace the case in which 
the inhomogeneous fluid is subjected to a velocity gradient to simulate the case of steady flow. Finally the 
theory is extended to include non-steady flow and contact is again established with Bernoulli’s equation. 

KEY WORDS Bernoulli equation, density gradients, non-steady flow. 

1 INTRODUCTION 

For problems of both fundamental and technological interest, such as the flow of 
liquids round obstacles, or the motion of bubbles in a molten mixture, the equations 
of hydrodynamics afford a valuable starting point. While they are known to provide, 
say in a bulk liquid, a correct description of liquid behaviour at long time and large 
distances (equivalent to small wavenumbers), they are not appropriate to treat 
phenomena which involve distances of the order of atomic dimensions. One such 
property is liquid surface energy c. This has been known, since the early work of 
Frenkel, to relate to bulk liquid isothermal compressibility K ,  via the thickness 1 of 
the liquid-vapour interface: 

The distance 1, for liquids far from the critical point, is of the order of oneA, as is 
clear, for instance, from Table I1 of the paper by Egelstaff and Widom’. 

To give a microscopic derivation of the relation (l.l), Bhatia and March’ (BM) 
therefore used low-order density gradient expansions, based on the atomic number 
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density profile, p ( z )  say, through the planar metal liquid-vapour interface. As back- 
ground to the present study, let us rewrite their Eq. (7) for the chemical potential p, 
with inclusion of an external potential energy U ( z ) ,  as 

This equation stems from writing the free energy of a non-uniform assembly in terms 
of a local free energy density $(r) as F = [$(r)dr. Gradient expansion of $(r) then 
yields, for a flat interface of area a in the xy plane in the external potential energy 
u (z): 

(1.3) 

In Eq. (1.3), a and b define the boundaries of the system of volume V say. The 
quantity $ ( p )  in Eq. (1.4) is the free energy density of a uniform system of density p ,  
while c(r ,  p )  is the Ornstein-Zernike direct correlation function of such a homoge- 
neous phase. One can usefully think of c(r ,  p )  as subsuming the essential information 
about the intermolecular forces into the quantity A ( p ) .  This is what is then required 
to generate the inhomogeneous density profile p ( z )  from the Euler-Lagrange equa- 
tion (1.2) of the variation principle 6 F  = 0. One can view the chemical potential p in 
Eq. (1.2) as the Lagrange multiplier entering the variational problem in order to take 
care of the normalization of the density profile p ( z ) .  Finally, in Eq. (1.2), p ( p )  is the 
chemical potential of a uniform system of density p while 

To complete this discussion of the background to the present work, let us note: 

(i) For external potential U ( z )  put to zero in Eq. (1.2), BM stress that this equation 
is then equivalent to the constancy of the pressure P across the inhomogeneity 
(see Eq. (2.5) below) and 

(ii) That the surface energy 0, again for U = 0, is obtained by integrating the above 
equation expressing the constancy of P though the interface to find 

a result which can be traced back to van der Waals. 
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We turn immediately to effect the generalization of the above microscopic theory 
to include steady flow. 

2 GENERALIZATION OF CHEMICAL POTENTIAL AND PRESSURE 
EQUATIONS TO INCLUDE STEADY FLOW, CHARACTERIZED 
BY VELOCITY v(z) PARALLEL TO ( x y )  PLANE OF INTERFACE 

We turn from the above summary of the treatment of a system in equilibrium to deal 
with a steady state situation. This implies that there are mechanisms to remove momen- 
tum and energy from the system, when a steady flow is imposed by external means. 

To be quite specific, we consider steady flow parallel to the (xy) plane of the 
interface of the inhomogeneous system under consideration. Then we must add a 
kinetic energy K ,  written in terms of a local kinetic energy k ( r )  as K = Jk(_r)dy,  or 
for the flat interface considered: 

K = i i $ M  p(z)v(z)’dz s 
where M is the molecular mass. Here we have simulated steady flow parallel to the 
interface by the velocity v(z) in Eq. (2.1). 

It is clear that minimizing F + K with respect to variations in the density profile 
then yields a new equation for the Lagrange multiplier p accounting for the con- 
straint of normalization of p(z) in the permitted density variations : namely 

the last term in Eq. (2.2) involving rewriting the terms in Eq. (1.2) in A and A’ as 
shown. In Eq. (2.2) A ( p )  is as defined in Eq. (1.5), the inhomogeneous density p(z) 
now replacing p. 

Multiplying Eq. (2.2) by p’(z) we now rewrite the various terms as follows: 

d d d U  
dz d z  d z  

p’p = - ( p p ( z ) )  : p’U(z) = - (pU) - p- : 

dz  
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and hence, from Eq. (2.2) times p’(z) one finds 

One immediately has a limiting check on Eq. (2.4) in that, if one puts the external 
potential energy U ( z )  and the flow term u(z) to zero simultaneously then evidently 
the RHS is zero and one has 

The expression in the square bracket in Eq. (2.5) is the pressure P in Eq.(9) of BM 
and evidently Eq. (2.5) is a statement of the constancy of P across the interface. 

It seems then natural to define a generalized pressure P(z;  U, u) as the square 
bracket in Eq. (2.4) and therefore to write 

It can now be noted that in the limit of an incompressible fluid, for which p is 
maintained constant, the RHS of Eq. (2.6) becomes the exact differential - d/dz [pU + 
:pMu2] ,  and Eq. (2.6) reduces to 

d 
d z  
- { P [ z ;  u, c ]  + p U ( z )  + $pMu’(z ) }  = 0 (2.7) 

which is a statement of Bernoulli’s theorem. 

Eq. (2.6), represents the desired generalization of Bernoulli’s theorem. 

lization to this situation is set out by Sommerfeld3. 

Evidently then, in the present microscopic framework, Eq. (2.4), or equivalently 

Let us finally effect the extension to a non-steady flow. The hydrodynamic genera- 

3 GENERALIZATION TO INCLUDE NON-STEADY FLOW 

Let us follow Sommerfeld and work with a velocity potential 4 defined by 

u = - grad 4. (3.1) 

We next adopt the procedure of Bloch4.’ who, however, it should be stressed, was 
concerned with the hydrodynamic theory of an inhomogeneous degenerate electron 
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gas. Nevertheless, his method is readily adapted to the present classical inhomo- 
geneous fluid. 

Bloch obtained the equation of motion for the fluid, again from a variation 
principle, by writing 

6 [ ' ' L d t = O  
J t ,  

with the Lagrangian L given by 

where H is the energy of the fluid in motion. H involves the kinetic energy 
K = jk(E)d_r introduced above, and with the appropriate adaptation to the classical 
liquid one then finds, in the non-steady state: 

M !!!! = +M (grad 4)' + chemical potential terms as before (3.4) 
at 

The equation of continuity has evidently also to be obeyed, and reads 

dP 
at 
- = div ( p  grad 4) (3.5) 

In the steady state it is evident that ap/dt = 0. Also, if we then take the limit of an 
incompressible fluid in the steady state we find 

div (grad 4) = 0 (3.6) 

since the density p in this limit is constrained to be constant. 
It remains only to make contact with the Bernoulli equation for non-steady flow, as 

formulated, for instance, in the book by Sommerfeld3. His Eq. (14) on page 89 reads 

(3.7) 

where we have here again used U as an external potential energy, in contrast to his 
definition. This requires then the factor multiplying U in Eq. (3.7). 

Instead of the Sommerfeid result (3.7) the desired microscopic extension of the 
Bernoulli equation for non-steady flow reads, as a generalization of Eq. (2.6): 

. (3.8) 
dz 

d d u (4 d 
dz  dz dz 
- P(z;  U ,  u)  = - p ( z )  - - f p  M - (grad 4)' + 

For the case when p is the held constant, Eq. (3.8) reduces to 
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which corresponds to the special case of Sommerfeld’s generalization of Bernoulli’s 
result in Eq.(3.7) above when one is dealing with planar geometry and density 
variations restricted to be perpendicular to the ( x y )  plane. 

4 SUMMARY 

The present microscopic theory is based on a low-order density gradient expansion. 
This is expressed in terms of (a) the bulk classical liquid Ornstein-Zernike direct 
correlation function c(r ,p) ,  determining the function A( p)  through Eq. (1.4) and 
(b) the density profile p(z) in the inhomogeneous fluid under discussion. This leads 
to Eq. (2.4), which represents the appropriate generalization of Bernoulli’s equation, 
which is for an incompressible liquid under steady flow conditions. Equation (2.4) 
is a direct consequence of the chemical potential Eq. (2.2), which is in turn charac- 
terized by the bulk liquid chemical potential p ( p )  and the function A ( p )  discussed 
immediately above. 

In principle, therefore, p(z) can be calculated for the inhomogeneous fluid from 
knowledge of bulk fluid properties plus the vapour density; from Eq. (2.2) with 
U = t’ = 0. In steady flow, the above information must, of course, be supplemented 
by knowledge of u(z), connected to the new profile, p(z ;u )  say, by the continuity 
equation (3.5) in the case when dp ldr  is put equal to zero. 

Since we referred to Blochs hydrodynamic theory of an inhomogeneous degene- 
rate electron gas in setting up the generalization of Eq. (2.2) for non-steady flow 
conditions, it is relevant as an example in that same context to note that Brown and 
March6 were able to solve the analogue of Eq. (2.2) for U = u = 0 for the electron 
density profile. This in turn enabled the surface tension Q of a simple liquid metal to 
be calculated from the analogue of Eq. (1.6), Eq. (1.1) thereby being regained, with an 
explicit, though naturally approximate, expression for the surface thickness of the 
electronic spill-out from the liquid metal surface. 
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